ねじれの位置の問題を解く!

問題 下の図のように\(AD//BC\)の台形\(EFGH\)を底面とする四角柱\(ABCD-EFGH\)があり、\(AB=6\)、\(BC=2\)、\(CD=3\)、\(DA=7\)、\(AE=4\)である。この四角柱の辺のうち辺\(AB\)とねじれの位置にあるすべての辺の合計を答えなさい。

ねじれの位置,問題

 

 

ねじれの位置とは?

  • ねじれの位置・・・平行でなく交わらない

↓詳しくはこちら

簡単にわかる! ~ねじれの位置とは?~

 

よって、辺\(AB\)と「平行な辺」「交わる辺」に印をつけます!

印のついていない残った辺がねじれの位置です。

 

 

辺\(AB\)と平行な辺

平行,ねじれの位置

 

辺\(AB\)と交わる辺

ねじれの位置

辺\(AB\)と交わる(触っている)辺は\(5\)つあります。

 

同じ平面上では辺\(AB\)と辺\(DC\)は交わると考える!
(伸ばすと交わる)

ねじれの位置

 

よって、ねじれの位置は辺\(EH,HG,DH,CG,FG\)となる。

\(AB=6\)、\(BC=2\)、\(CD=3\)、\(DA=7\)、\(AE=4\)から

\(EH+HG+DH+CG+FG\\=7+3+4+4+2=20\)

答え \(20\)


スポンサーリンク

コメントを残す

CAPTCHA



スポンサーリンク

このページの先頭へ